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Abstract—This paper proposes a new method for chromosome
image compression based on an important characteristic of
these images: the regions of interest (ROIs) to cytogeneticists for
evaluation and diagnosis are well determined and segmented.
Such information is utilized to advantage in our compression
algorithm, which combines lossless compression of chromosome
ROIs with lossy-to-lossless coding of the remaining image parts.
This is accomplished by first performing a differential operation
on chromosome ROIs for decorrelation, followed by critically
sampled integer wavelet transforms on these regions and the
remaining image parts. The well-known set partitioning in hier-
archical trees (SPIHT) (Said and Perlman, 1996) [1] algorithm
is modified to generate separate embedded bit streams for both
chromosome ROIs and the rest of the image that allow continuous
lossy-to-lossless compression of both (although lossless compres-
sion of the former is commonly used in practice). Experiments
on two sets of sample chromosome spread and karyotype images
indicate that the proposed approach significantly outperforms
current compression techniques used in commercial karyotyping
systems and JPEG-2000 compression, which does not provide the
desirable support for lossless compression of arbitrary ROIs.

Index Terms—Chromosome spread and karyotype images, dif-
ferential operations, integer wavelet transform, JPEG-2000, lossy
and lossless compression, region-of-interest coding, SPIHT.

I. INTRODUCTION

CHROMOSOME karyotyping analysis [2] is an important
screening and diagnostic procedure routinely performed

in clinical and cancer cytogenetic labs. Chromosome spread
images are acquired through microscope imaging and subse-
quently analyzed for individual chromosome segmentation,
orientation, measurement, and classification. The result of
this procedure is a so-called karyotype image in which all
chromosomes in a cell are graphically arranged according to an
international system for cytogenetic nomenclature (ISCN) [3]
classification. Fig. 1 shows a typical (512512, 8 bits/pixel)
G-banding metaphase cell spread and a karyotype of all the
chromosomes in that cell. Ordinarily, in the practice of clinical
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Fig. 1. (a) A metaphase cell spread image and (b) its karyotype. In the
karyotype, all chromosomes in the spread are rotated and copied onto an image
with constant background and positioned according to their classes. The label
annotation is drawn separately.

cytogenetics, both the chromosome spread and karyotype
images are saved for additional medical opinions and for
medical record keeping. With the recent development in the use
of digital media for biomedical image archiving, storage, and
communication, efficient compression techniques are highly
desirable to accommodate the rapid growth of chromosome
image data.

Image compression1 techniques generally fall into two cate-
gories: lossy and lossless compression. Some information is ir-
retrievably lost in lossy compression, whereas there is no loss of
information in lossless compression, i.e., the coding process is
reversible. Lossy compression generally achieves higher com-
pression ratios than lossless compression. However, lossy com-
pression has found only limited use in medical applications be-
cause image information is critical for clinical evaluation and
diagnosis cannot be compromised. As such, commercial kary-
otyping systems currently store entire chromosome spread or
karyotype images in the TIFF format and use lossless techniques
such as Lempel–Ziv–Welch (LZW) coding [4], [5] for compres-
sion.

Unlike some other types of medical imagery, chromosome
images (see Fig. 1) have an important common characteristic:
the regions of interest (ROIs) to cytogeneticists for evaluation
and diagnosis are all well determined and segmented prior to
image storage. The remaining background images, which may
contain cell nuclei and stain debris, are kept as well in routine
cytogenetics lab procedures for specimen reference rather than
for diagnostic purposes. Since the chromosome ROIs are much
more important than the rest of the image for karyotyping anal-
ysis, lossless compression for the former is required while lossy

1We use image coding and image compression interchangeably in this paper.
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compression for the latter is acceptable. This calls for lossy and
lossless ROI (ROI) coding.2 In contrast, commercial chromo-
some karyotyping systems fail to utilize the ROI information by
compressing entire chromosome spread or karyotype images.

The new wavelet-based JPEG-2000 standard [6] offers many
features, including ROI coding which is accomplished by as-
signing higher priority in the coding process to wavelet coeffi-
cientsin and aroundthe ROIs. However, transform and coding
of the ROIs and the background image are not done separately
in JPEG-2000—there is no clear separation between the ROIs
and the background in the wavelet domain as there is in the
image domain. Reconstruction of the image domain ROIs, thus,
requires wavelet coefficients from a larger region, whose size
depends on the filter length and the levels of wavelet decom-
position. Unless lossless compression of the whole rectangular
image is achieved, there is no guarantee of lossless compression
of the ROIs. In short, JPEG-2000 supports lossless compression
of the whole image but not of arbitrary ROIs.

To improve the efficiency of LZW coding and rectify the
above-mentioned shortcoming of JPEG-2000, we propose
a new method in this paper, one which takes advantage of
the ROI information and seeks to code chromosome images
adaptively with respect to image content. Specifically, we aim
to render lossless compression inside the chromosome ROIs,
while achieving lossy-to-lossless compression for the rest of
the image, based on a combination of differential and wavelet
coding techniques. We accomplish our goal by first performing
a differential operation on the chromosome ROIs [7], followed
by separatecritically sampledinteger wavelet transforms on
the chromosome ROIs and on the remaining image parts. We
modify the celebrated set partitioning in hierarchical trees
(SPIHT) [1] algorithm for ROI coding and generate separate
embeddedbit streams for both the chromosome ROIs and the
rest of the image. An embedded bit stream has the property
that each additional bit improves somewhat upon the quality
of the decoded image and that the whole bit stream can be
truncated at any point to provide a decoded image with quality
commensurate with the bit rate. Although we typically insist
upon lossless compression of the chromosome ROIs, lossy
compression of these regions can also be achieved simply by
decoding at lower bit rates than the encoding one. That is, both
lossy and lossless compression modes for chromosome ROIs
and the rest of the image are available.

We pick the SPIHT coder because it has lower complexity
than the JPEG-2000 coder but achieves comparable coding per-
formance for regular rectangular images. Experiments on two
sets of sample chromosome spread and karyotype images in-
dicate that our proposed technique significantly outperforms
those (e.g., LZW coding) currently used in commercial kary-
otyping systems. In addition, by treating the chromosome ROIs
and the remaining image parts separately with critically sampled
wavelet transform and modified SPIHT coding for each part, we
achieved beyond what JPEG-2000 can offer in terms of lossless
ROI coding.

2One simple way to compress the chromosome ROIs is to extract all pixels
inside the ROIs in one file and use WinZip to compress the resulting file.

(a) (b)

Fig. 2. (a) The image corresponding to the chromosome ROIs of Fig. 1(a)
with a white background. Our proposed algorithm can losslessly compress
these chromosome ROIs to 23 219 bytes. (b) The lossy image decoded from a
JPEG-2000 bit stream of 23 219 bytes.

To illustrate our contribution in this paper, we present an
example that compares different compression schemes for the
image in Fig. 2(a), which corresponds to the chromosome ROIs
of Fig. 1(a) with a white background. There are 39 289 pixels
within the ROIs. WinZip (Version 8.0) compresses a file of
39 289 bytes consisting of these pixels into 35 184 bytes. Our
proposed wavelet-based scheme can losslessly compress these
chromosome ROIs into 23 219 bytes—achieving a 35% savings
over LZW coding (bits needed for specifying the ROI bound-
aries are not counted in either case, actually 2258 bytes are used
to store the ROI boundaries).

We also use JPEG-2000 with the chromosome ROI sup-
port to losslessly compress the 512512 image with white
background and the compression result is 35 514 bytes.3 The
JPEG-2000 bit stream is made up of layered, truncated versions
of the lossless bit stream that can be decoded into different
lossy images. We use the first 25 447 (23 219 plus 2258) bytes
of the bit stream to decode a lossy version shown in Fig. 2(b).
Pixels both in and around the ROIs are different from the
original, with the peak signal-to-noise ratio (PSNR)4 in the
chromosome ROIs being 47.84 dB. Thus, using JPEG-2000
instead of our proposed scheme for compressing chromosome
ROIs leads to either inferior lossless coding performance or
quality loss at the same bit rate.

As SPIHT-based ROI coding of images and video is still an
active area of research [8]–[10], we point out that, although our
new algorithm is developed specifically for chromosome image
compression, it can be used for general ROI image compres-
sion and extended to object-based video coding [11], [12] for
MPEG-4.

The rest of this paper is organized as follows: Section II
reviews wavelet image coding. In Section III, the differential
operation is motivated first, followed by a detailed description of
our proposed coding scheme. Section IV presents experimental
results on two representative chromosome spread and karyotype
image sets and compares the proposed compression method
with the technique currently used in commercial karyotyping
systems. Section V concludes the paper.

3As our proposed algorithm can be applied to any ROI image, it achieves
lossless coding at 33 528 bytes for the same image, confirming that SPIHT and
JPEG-2000 coding perform comparably for regular rectangular images.

4The PSNR is defined as 10log (255 /MSE) and measured in decibels (dB).
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(a) (b)

Fig. 3. Wavelet decomposition offers a tree-structured image representation. (a) A three-level wavelet decomposition of a chromosome spread image. (b) A spatial
orientation tree consisting of coefficients from different bands that correspond to the same spatial region of the original image. Arrows identify the parent-children
dependencies.

II. WAVELET IMAGE CODING

Since the introduction of the wavelet transform [13], [14] as
a signal processing tool in the late 1980s, a variety of wavelet-
based coding algorithms [1], [15] have advanced the limits of
compression performance well beyond that of the current com-
mercial JPEG image compression standard [16]. These algo-
rithms achieve twice as much compression as the baseline JPEG
coder does at the same quality and they form the basis of the new
JPEG-2000 [6] image compression standard.

The improved performance of wavelet image coding [17]
over JPEG coding stems from the fact that wavelet decompo-
sitions offer space-frequencyrepresentations of images, i.e.,
low-frequency coefficients have large spatial support (good
for representing large image background regions), whereas
high-frequency coefficients have small spatial support (good
for representing spatially local phenomena such as edges). The
wavelet representation, therefore, calls for new quantization
strategies that go beyond traditional subband coding [18]
techniques (e.g., bit allocation and deadzone quantization) to
exploit this underlying space-frequency image characterization.

Shapiro made a breakthrough in 1993 with his embedded ze-
rotree wavelet (EZW) coding algorithm [15]. Since then a new
class of algorithms have been developed that achieve signifi-
cantly improved performance over the EZW coder. In partic-
ular, Said and Pearlman’s work on SPIHT [1], which improves
the EZW coder, has established zerotree-based techniques as
the current state-of-the-art of wavelet image coding since the
SPIHT algorithm proves to be very efficient for both lossy and
lossless compression.

A. SPIHT Coding

A wavelet image representation can be thought of as a tree-
structured spatial set of coefficients.A spatial orientation tree
is defined as the set of coefficients from different bands that
represent the same spatial region in the image. Fig. 3 shows

a three-level wavelet decomposition of a chromosome spread
image and a spatial orientation tree. Arrows in Fig. 3(b) iden-
tify the parent-children dependencies in a tree. The lowest fre-
quency band of the decomposition is represented by the root
nodes (top) of the tree, the highest frequency bands by the leaf
nodes (bottom) of the tree, and each parent node represents a
lower frequency component than its children. Except for a root
node, which has only three children nodes, each parent node has
four children nodes, the 2 2 region of the same spatial loca-
tion in the immediately higher frequency band.

Both the EZW and SPIHT algorithms [1], [15] are based
on the idea of using multipass zerotree coding to transmit the
largest wavelet coefficients (in magnitude) at first. We use “ze-
rotree coding” as a generic term for both schemes, although
the SPIHT coder is more popular because of its superior per-
formance. A set of tree coefficients is significant if the largest
coefficient magnitude in the set is greater than or equal to a cer-
tain threshold (e.g., a power of two); otherwise, it is insignif-
icant. Similarly, a coefficient is significant if its magnitude is
greater than or equal to the threshold; otherwise, it is insignif-
icant. In each pass the significance of a larger set in the tree is
tested at first: if the set is insignificant, a binary “zerotree” bit is
used to set all coefficients in the set to zero; otherwise, the set
is partitioned into subsets (or child sets) for further significance
tests. After all coefficients are tested in one pass, the threshold
is halved before the next pass.

The underlying assumption of the zerotree coding framework
is that most images can be modeled as having decaying power
spectral densities. That is if a parent node in the wavelet coeffi-
cient tree is insignificant, it is very likely that its descendants are
also insignificant. The zerotree symbol is used very efficiently
in this case to signify a spatial subtree of zeros.

When the thresholds are powers of two, SPIHT coding can be
thought of as a bit-plane coding scheme. It encodes one bit-plane
at a time, starting from the most significant bit. With the sign bits
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Fig. 4. The proposed compression algorithm.

and refinement bits (for coefficients that become significant ear-
lier) being coded on the fly, SPIHT achieves embedded coding
in the wavelet domain using three lists: the list of significant
pixels (LSP); the list of insignificant pixels (LIP); and the list
of insignificant sets (LIS). The SPIHT coder performs compet-
itively with most other coders published in the literature [19],
while possessing desirable features such as relatively low com-
plexity and rate embeddedness.

B. JPEG-2000

In response to the rapid progress in wavelet image coding
research, the International Standards Organization has adopted
the wavelet transform as the workhorse in the new JPEG-2000
image coding standard. The baseline JPEG-2000 coder em-
ploys the embedded block coding with optimized truncation
(EBCOT) [20] algorithm for bit-plane coding of wavelet
coefficients. While the SPIHT algorithm applies arithmetic
coding [21] on the significant bits only, EBCOT additionally
uses arithmetic coding on the sign bits and refinement bits.
Furthermore, EBCOT breaks one bit-plane into threefractional
bit-planes and compresses them in decreasing order of rate-dis-
tortion (R-D) importance. Because of this, the complexity of
JPEG-2000 coding is higher than that of SPIHT coding.

In terms of compression efficiency, JPEG-2000 performs
comparably to SPIHT. The strength of the JPEG-2000 standard
lies in its rich set of features such as lossy and lossless com-
pression, scalability in rate and image resolution, ROI coding,
open architecture, and robustness to bit errors, to name a few.
We refer curious readers to a recently published comprehensive
book on JPEG-2000 [6] for details.

Here, we emphasize the fact that JPEG-2000 implements
“soft” ROI coding: not only are pixels in the ROIs decoded
with much better quality; pixels around the ROIs also get
favorable treatment, albeit to a lesser extent than those in the
ROIs [see Fig. 2(b)]. As mentioned in Section I, this is because
the wavelet transforms for the ROIs and the background image
are not done separately in JPEG-2000. For applications where
clear separations of ROIs and the background are not insisted
upon, JPEG-2000 offers a smooth (or soft) transition of image
quality across ROI boundaries.

III. CASCADED DIFFERENTIAL AND WAVELET CODING

Before detailing the proposed coding scheme, we point out
some important differences between chromosome spread and
karyotype images. In chromosome spread images, the back-
ground regions outside chromosomes usually contain materials

such as interphase cell nuclei, stain debris and transmitted light
microscope shading. Chromosomes in spread images are ran-
domly oriented. Segmentation of these chromosomes is first
done automatically, followed by user interaction to ensure that
all the chromosomes are properly located and isolated. In kary-
otype images, however, the segmented chromosomes from a
spread image are re-oriented before copying onto a constant-
background image and graphically arranged according to their
ISCN classification.

The coding method we propose here seeks to encode the chro-
mosome images adaptively with respect to the region contents in
the image. It is aimed to render lossless compression inside the
chromosome ROIs for both the spread and karyotype images. As
to the background regions, although practically there is no diag-
nostic information available from these regions in both types of
images, our method is still slated to incorporate a lossy-to-loss-
less coding provision for the background regions of spread im-
ages as an option.

The overall design of the coding scheme is based on a
combination of differential and wavelet coding operations.
Initially, a differential operation is performed on chromosome
ROIs only for decorrelating a chromosome image. After this,
critically sampled integer wavelet transforms are computed
for the chromosome differentials and the remaining image
parts separately. A modified SPIHT algorithm is then applied
to generate embedded bit streams that allow continuous
lossy-to-lossless compression, depending upon whether the
pixels are inside the chromosome ROIs or not. Fig. 4 shows
the diagram of the proposed compression scheme. Since the
background regions in karyotype images are constant-valued
and trivial to code, in the remainder of this paper, we limit the
discussion to chromosome spread images only unless otherwise
stated.

The differential operation is motivated first in the sequel, fol-
lowed by a detailed description of each part of our proposed
coding scheme.

A. Differential Operations

Chromosomes in spread and karyotype images are all
segmented as ROIs. Compression of these chromosome ROIs
can be better approached by a combination of differential and
wavelet techniques than the LZW coding. In traditional predic-
tive image coding [22], an image is modeled as a first-order
autoregressive process
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Fig. 5. (a) A chromosome in a spread image. (b) The same chromosome in the
karyotype image. (c) Three-dimensional (3-D) view of the chromosome in (a).
(d) Three-dimensional view of the chromosome in (b). (e) Three-dimensional
view of the chromosome in (a) after 1-D horizontal differentiation. (f)
Three-dimensional view of the chromosome in (b) after 1-D horizontal
differentiation. (g) Three-dimensional view of the chromosome in (a) after 1-D
vertical differentiation. (h) Three-dimensional view of the chromosome in (b)
after 1-D vertical differentiation.

where is the correlation coefficient between neighboring
pixels and and is the stationary
zero-mean innovations process that is independent of past
image pixels for . Note that dependencies among
rows and columns are ignored in this simple one-dimensional
(1-D) model. The best linear mean square predictor of the
current pixel is . It is more efficient to code
the innovations process

using differential pulsecode modulation coding [23] than to
code the original image because , i.e.,
the variance of is smaller than that of .

Image pixels in general are highly correlated. This is also true
for chromosome images. For example, Fig. 5(a) and (b) shows a
single chromosome extracted and enlarged from a spread image
and its corresponding karyotype; Fig. 5(c) and (d) shows their
3-D representations. The neighboring pixels in these images are
highly correlated (with 0.90). Because our interest lies in
lossless compression of chromosome ROIs andis close to one
for chromosome images, we approximateas one so that

is still an integer sequence. We, thus, code the pixel-to-pixel
differentials rather than the pixels themselves.

Although is not the best linear mean square pre-
dictor of , we have the variance of as

(1)

which is less than if . Given 0.90, we conclude
that for chromosome images. Fig. 5(e) and (f) shows
the 1-D horizontal differentials and Fig. 5(g) and (h) shows
the 1-D vertical differentials of the chromosome and karyotype
images, respectively. It is easy to see from these figures that
the variance (or energy) of horizontal/vertical differentials is
smaller than that of the original chromosome image. Thus, it
is easier to compress the differentials than the original chromo-
some images using the wavelet transform.

For karyotype images, recall that the segmented chromo-
somes from a spread image are all rotated to the vertical
orientation [see Fig. 1(b)], pixel correlation is stronger along
this direction in these images. According to (1), we choose dif-
ferentials along the vertical direction (with higher correlation)
so that is smaller for better performance in the subsequent
step of wavelet compression. This is done by computing the
1-D vertical differentials on pixels inside the boundary of
each chromosome region and replacing each with values of its
vertical differential.

For spread images, because the chromosomes are randomly
oriented, we do not expect the choice of differential orientation
to affect the coding efficiency as much. This is confirmed by our
experiments in Section IV.

B. Lifting-Based Wavelet Transforms of Chromosome ROIs

Many wavelet filters have been designed and used for various
applications. Different wavelet filters are compared for lossy
image compression in [24] and lossless image compression in
[25]. In general, the 5/3 filters [26] outperform other wavelet
filters for lossless compression, while the Daubechies 9/7 filters
[27] are the overall best for lossy compression. These filters
are chosen as the default filters for lossless and lossy image
compression, respectively, in JPEG-2000.

It was shown in [28] that every finite impulse response
wavelet or filter bank can be decomposed into lifting steps and
that each lifting step can be further split into two additions and
one multiplication. In addition to achieving as much as a 2
speed-up over filtering-based implementation, the lifting-based
approach makes it very easy to have an integer-to-integer map-
ping. Because image pixels take integer values, integer wavelet
transforms are needed for lossless image compression [26];
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Fig. 6. Critically sampled wavelet transform for both even and odd length signals using odd-length symmetric biorthogonal filters and odd-symmetric extensions
over boundaries.

Fig. 7. Example of two-dimensional (2-D) ROI with horizontal low-pass and
high-pass coefficients aligned vertically.

otherwise the wavelet coefficients—hence the reconstructed
image pixels—will no longer consist of integers, destroying
invertibility. We used both the 5/3 and 9/7 biorthogonal wavelet
filters in our experiments (although the former have lower
computational complexity than the latter) and implemented
integer wavelet transforms based on these filters via lifting
[28], [29]. The lifting-based forward transform equations for
these filters can be written explicitly as

where , , and are the input signal, low-pass band,
and high-pass band, respectively, and and

. The inverse transform equations can be
derived easily from the forward ones.

For chromosome images, we only perform the wavelet
transform within the ROIs, which are arbitrarily shaped.
Many approaches have been proposed in the literature for 2-D
shape-adaptive wavelet transforms [30]–[33]. In our proposed
coding algorithm, we use odd-symmetric extensions over the
ROI boundaries.

Consider a 1-D signal with finite length . We obtain a
periodic signal with period by adding odd-sym-
metric extensions over its boundaries (see Fig. 6). Note that, re-

(a) (b)

Fig. 8. Wavelet representation of the chromosomes in one spread image.
(a) The original image. (b) A three-level critically sampled integer wavelet
transform of the chromosomes (ROIs).

gardless of the signal length, is always even so that there
are an equal number of low-pass and high-pass coefficients in
each period after a one-level wavelet transform. Fig. 6 shows
the boundary extensions and filtering orders for the following
cases: 1) even length signal starting at an even position; 2) even
length signal starting at an odd position; 3) odd length signal
starting at an even position; and 4) odd length signal starting at
an odd position.

If we use lifting to compute the wavelet coefficients along the
extended periodic signal (the lifting steps proceed from right to
left for cases 2 and 4), then the interleaved wavelet coefficient
representation is also periodic with period. Moreover, there
are only distinct coefficients in each period, with an extra
low-pass or high-pass coefficient whenis odd. This means
that one can compute critically sampled wavelet transforms for
both even or odd length signals. In the above boundary exten-
sions and transform, the low-pass filtering is fixed at even posi-
tions and high-pass filtering is fixed at odd positions. This fea-
ture has the advantage that, after a transform along one dimen-
sion, both low-pass and high-pass coefficients are automatically
aligned for subsequent transforms along the other dimension.
Fig. 7 shows that, after filtering along the horizontal direction
for 2-D ROIs, all the low-pass coefficients have evencoor-
dinates, while all the high-pass coefficients have oddcoordi-
nates.

Fig. 8 shows a chromosome spread image and a three-level
critically sampled integer wavelet transform of the chromo-



378 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 49, NO. 4, APRIL 2002

Fig. 9. Illustration of two spatial orientation trees in the wavelet-domain ROIs.
All coefficients in one tree (drawn in dotted lines) are outside the ROIs. This
tree is not coded in the modified SPIHT algorithm. Another tree (drawn in solid
lines) has some of its coefficients outside the ROIs. Significance test of a subset
in the tree is skipped if every coefficient in the subset is outside the ROIs.

somes (ROIs) via lifting. It is easy to see that an ROI in
the image domain induces an ROI for each subband in the
transform domain. The resulting wavelet-domain ROI will be
used in the later coding stage.

C. The Modified SPIHT Algorithm

After the aforementioned cascaded differential and wavelet
transform, the wavelet coefficients are encoded by a modified
SPIHT algorithm. The wavelet coefficients are treated as a col-
lection of spatial orientation trees in SPIHT, with each tree con-
sisting of the coefficients from all subbands that correspond to
the same spatial location in the image. Fig. 9 shows that the
spatial orientation trees are divided into three categories: 1) All
coefficients in the tree are inside the wavelet domain ROIs; 2)
Some coefficients in the tree are outside the ROIs (drawn in solid
lines in Fig. 9); and 3) All coefficients in the tree are outside the
ROIs (drawn in dotted lines in Fig. 9).

Recall that the SPIHT algorithm maintains three lists (LSP,
LIP, and LIS) in the process of bit-plane coding. It outputs three
types of bits: significance bits, sign bits, and refinement bits.
The modified SPIHT algorithm differs from the original one
only in that the extraneous coefficients outside the ROIs are not
coded. This would, in turn, require that the region boundary in-
formation (the chain code) about the ROIs is available at both
the encoder and decoder. Starting with the wavelet-domain ROIs
induced from that for the original image, the modified SPIHT
algorithm skips coding a spatial orientation tree if all coeffi-
cients in the tree are outside the ROIs. This is simply done by
not putting the coordinates of the root node (in the lowest fre-
quency band) of the tree in the LIP and the LIS in the SPIHT
initialization step.

For a spatial orientation tree with some coefficients outside
the ROIs, the significance test of a coefficient in the tree is
skipped if that coefficient is outside the ROIs. Likewise, the sig-
nificance test of a subset in the tree is skipped if all coefficients
in the subset are outside the ROIs. As sign bits and refinement
bits are only associated with coefficients in the ROIs, no modifi-
cation is needed in related parts of the original SPIHT algorithm
for these bits.

Fig. 10. The boundary direction code.

Finally, when all coefficients in a spatial orientation tree are
inside the ROIs, the tree is coded in the same way as in the orig-
inal SPIHT. Note that if the ROIs are the whole image, then the
modified SPIHT algorithm described above will give exactly the
same performance as the original SPIHT algorithm does (there
is no need to use and send the region boundary chain code in
this case). Thus, the modified SPIHT algorithm is more general
than the original one.

With the modified SPIHT coding algorithm, lossless coding
of arbitrary ROIs is achieved when all bit planes of the integer
wavelet coefficient are coded. Because the lossless bit stream
is embedded, it can be truncated at any point to provide a de-
coded image with quality commensurate with the bit rate. Thus,
the algorithm provides the attractive feature of lossy-to-lossless
coding.

D. Chromosome Region Boundary Coding

Chromosomes in spread images are usually segmented auto-
matically, based on a combination of image segmentation tech-
niques [34], [35], and reviewed interactively by cytogeneticists
for correction of possible machine errors. The result of the seg-
mentation process is a set of delineated ROI region boundaries
of the chromosomes. Hence, the foreground chromosome ROIs
and background ROI are defined and separated.

Chromosome regions are represented compactly using the
chain codes [22] along the chromosome boundaries. They con-
tain not only the contour information of chromosome ROIs,
but also the relative position of these regions in the image. A
chain code starts by specifying an arbitrarily selected starting
point with coordinates located on the region boundary.
The identified pixel has eight neighbors. At least one of these
must also be a boundary point. The boundary chain code spec-
ifies the direction in which a step must be taken to go from the
present boundary point to the next. Fig. 10 shows the eight direc-
tions of the identified pixel. Since there are eight possible direc-
tions, every direction is represented by three bits, say, from zero
through seven. Thus, the boundary chain code consists of the
coordinates of the starting point, followed by a sequence of di-
rection codes that specify the path around the boundary. With the
chain code, it takes only one coordinate pair and three bits
for each remaining boundary point to store the region boundary
of one chromosome. We can randomly access individual chro-
mosomes to accommodate lossless coding of the chromosome
ROIs and lossy-to-lossless coding of the background. The over-
head generated by the chromosome boundary chain code is usu-
ally very nominal.
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(a)

(b)

Fig. 11. Lossless compression results (in b/p) for whole spread and karyotype
images by use of the modified SPIHT algorithm with the 5/3 and 9/7 wavelet
filters and different wavelet decomposition levels. (a) Average lossless
compression results for ten spread images. (b) Average lossless compression
results for ten karyotype images.

IV. EXPERIMENTAL RESULTS

Experiments are conducted to test the performance of
our proposed coding scheme. We use two sets of randomly
selected chromosome data: one containing ten spread images
and the other one having ten karyotype images. Each image
is 764 560 and each pixel has eight bits resolution. These
images are fairly representative of the human chromosome
spreads and karyotypes analyzed and archived in clinical
cytogenetics labs.

In order to compare the compression performance objec-
tively, we also conduct experiments based on the same data
using three benchmark image compression methods: 1) storing
these images in TIFF format with LZW coding5 , which is cur-
rently employed in commercial karyotyping systems; 2) LZW
coding with the latest version WinZip 8.0; and 3) JPEG-2000
compression.

5The version of LZW coder used in TIFF is earlier than the one in WinZip 8.0

(a)

(b)

Fig. 12. Lossless compression of chromosome ROIs in (a) ten spread and
(b) ten karyotype images using cascaded differential and wavelet coding with
different differential operations and levels of wavelet transform. Results are
given in terms of average b/p versus wavelet transform levels.

In our proposed coding scheme, lossless compression is
mainly used to compress the chromosomes ROIs. During
our experiments, however, we also test different methods
on the whole image for comparison. In the lossy-to-lossless
coding experiments, on the other hand, the background in a
chromosome spread image is compressed using different bit
rates, while the chromosome ROIs are compressed losslessly.
To make the performance evaluation easy and consistent, all
results presented in this section are described by bit rate in
terms of bit per pixel (b/p) for lossless compression, and by
PSNR (in decibels) for lossy compression.

A. Lossless Coding Performance

1) Performance by Use of Different Wavelet Filters and
Levels of Wavelet Transform:We compare the lossless perfor-
mance of SPIHT coding by use of different wavelet filters and
levels of wavelet transform for the whole image. Because the
chromosome image size (764560) is not some power of two
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TABLE I
LOSSLESSCOMPRESSIONRESULTS FORTEN CHROMOSOMESPREAD AND TEN KARYOTYPE IMAGES. THE BIT RATE RANGE [in BITS/PIXEL (b/p)] IS

REPORTED FOREACH CODING SCENARIO, WITH THE MEAN INCLUDED IN PARENTHESES. (a) LOSSLESSCOMPRESSION OF THEORIGINAL

764� 560 IMAGES. (b) LOSSLESSCOMPRESSION OFARBITRARILY SHAPED CHROMOSOMEROIS. BIT RATES USED IN CHAIN CODES

FOR SPECIFYING CHROMOSOMEBOUNDARIES ARE ALREADY COUNTED

(a)

(b)

in either dimension, we have to use the modified SPIHT algo-
rithm even for coding the whole image. In our implementation
of modified SPIHT coding, we use the 5/3 and 9/7 wavelet
filters with different decomposition levels (e.g., two to six).
Note that no differential operations are applied before modified
SPIHT coding on the whole image.

Fig. 11 shows lossless compression results (averaged over ten
images) by using the modified SPIHT on the original spread im-
ages and karyotype. The 5/3 filters give better performance than
the 9/7 filters for both types of images. This is consistent with
results reported in [25]. We henceforth only report results from
using the 5/3 filters in lossless coding experiments. We also ob-
serve from Fig. 11 that, as the number of wavelet decomposition
levels increases, the coding efficiency improves up to some op-
timum point and then either stays at the optimum point or even
degrades slightly. Four to six levels of wavelet decomposition,
thus, work the best for lossless compression of the whole image.

2) Performance by Use of Different Differential Opera-
tions: We now compare the lossless performance of cascaded
differential and wavelet/SPIHT coding by use of different
differential operations for chromosome ROIs. The modified
SPIHT algorithm is applied on either the original chromosome
ROIs (without differential operation), the 1-D horizontal dif-
ferentials, or 1-D vertical differentials. The 5/3 filters are used
with different levels of wavelet decomposition, and lossless
compression results (averaged over ten images) are plotted in
Fig. 12 for chromosome ROIs in both spread and karyotype
images. Four to six levels of wavelet decomposition also work
the best for lossless compression of chromosome ROIs. More
importantly, Fig. 12 clearly shows the coding gain of using
differential operations. In addition, compressing 1-D vertical
differentials gives the best result for karyotype images. This
is because the chromosomes have been rotated and vertically
oriented. For spread images, however, compression of 1-D
horizontal or vertical differentials gives very close results be-
cause the chromosomes are randomly oriented. Based on these
observations, we conclude that it is best to use six levels of
wavelet decomposition with the 5/3 filters in modified SPIHT

to code 1-D vertical differentials for lossless compression of
chromosome ROIs. We will use this setting in our cascaded
differential and wavelet coder in the following for comparison
with other lossless coders.

3) Comparison With Other Lossless Coding Tech-
niques: We compare our proposed coding scheme with
LZW coding and JPEG-2000. Because the LZW coder built in
the TIFF format and the JPEG-2000 coder only handle lossless
compression of regular rectangular images; whereas there
exists no such constraint for the LZW coder in WinZip and in
our proposed coder, two sets of experiments are conducted. The
first set of experiments compares LZW (in TIFF and WinZip),
JPEG-2000, and modified SPIHT coding of regular rectangular
spread images (with original or flat background) and karyotype
images; the second ones match LZW coding against cascaded
differential and wavelet coding of chromosome ROIs. We pick
the latest version WinZip 8.0 for testing LZW coding and
use Taubman’s Kakadu V2.2 implementation, which is fully
compliant with the standard, for JPEG-2000 coding.

Results from the first set of experiments are given in
Table I(a). The bit rate range (in bits per pixel) is reported for
each coding scenario, with the mean included in parentheses.
LZW coding in WinZip 8.0 uniformly outperforms the older
version used in the TIFF format. While JPEG-2000 and modi-
fied SPIHT offer comparable compression performance, both
work better than LZW coding in TIFF. Between the modified
SPIHT and LZW coding in WinZip 8.0, the former gives better
lossless compression performance for spread images with
original background; both perform comparably for spread and
karyotype images with flat background. Finally, we see that
karyotype images with flat background are easier to compress
than spread images with flat background.

Results from the second set of experiments are summarized
in Table I(b), and plotted in Fig. 13. For fair comparisons, LZW
coding is used here to compress the file consisting of pixels only
in the chromosome ROIs, and the rate spent in chain codes for
specifying chromosome boundaries (about 6%–10% of the total
rate) is included in the final rate. Although we only code pixels
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Fig. 13. Averaged results from lossless compression of the chromosome ROIs,
including the chromosome boundary chain codes. The compression methods
and the ROI types are: 1: WinZip 8.0 on the spread ROIs; 2: The proposed
method on the spread ROIs; 3: WinZip 8.0 on the karyotype ROIs; and 4: The
proposed method on the karyotype ROIs.

in ROIs in both coders, the reported bit rate in b/p is computed
with respect to the original image size (764560) for easy com-
parison with results in Table I(a).

Results in Table I(b) demonstrate that our cascaded differen-
tial and wavelet coder outperforms the LZW coder in WinZip
8.0 by 31% for coding chromosome ROIs in spread images and
24% for coding chromosome ROIs in karyotype images, respec-
tively.

From results in both tables, we clearly see that our proposed
coder is by far the best for lossless compression of chromosome
ROIs. Compared with storing chromosome images with flat
background in TIFF format with LZW coding, our proposed
scheme offers 54% and 55% savings in losslessly archiving
chromosome ROIs in spread and karyotype images, respec-
tively. In other words, our new method more than doubles the
amount of compression achieved in current commercial kary-
otyping systems. This demonstrates the power of our proposed
approach, in which we can take pixels in chromosome ROIs
only and compress them efficiently.

Before concluding this subsection, we point out that, although
we have so far focused exclusively on lossless compression, our
proposed coder also allows lossy compression of chromosome
ROIs. This can be done simply by decoding a truncated ver-
sion of the losslessly compressed bit stream. The lossy mode is
useful in applications like progressive image transmission in cy-
togenetic telemedicine and fast searching and browsing of chro-
mosome spread and karyotype images.

B. Lossy-to-Lossless Coding of Chromosome Background
Images

Only chromosome spread images are used in these tests. This
is because the background in a karyotype image is generally
constant-valued and, therefore, requires no coding. We assume
that the chromosome ROIs and boundaries are already losslessly
coded by using our cascaded differential and wavelet coder.
Lossy-to-lossless compression is achieved by directly applying
the modified SPIHT coder on background images using the 5/3
or the 9/7 filters and six levels of integer wavelet decomposition.

TABLE II
LOSSLESSCOMPRESSIONRESULTS FORTEN CHROMOSOMEBACKGROUND

IMAGES THE BIT RATE RANGE (b/p) IS REPORTED FOREACH CODING

SCENARIO, WITH THE MEAN INCLUDED IN PARENTHESES

Fig. 14. PSNR performance (in dB) of the modified SPIHT coder on lossy
coding of chromosome background images. The PSNR numbers are computed
with respect to the whole image, in which there is no loss in chromosome ROIs.
The rates are for the chromosome background images only.

Lossless compression results for ten chromosome background
images are summarized in Table II. The 5/3 filters again outper-
form the 9/7 filters.

Lossy coding of a chromosome background image can be re-
alized by encoding/decoding at any rate lower than the lossless
rate needed for that image. Fig. 14 depicts the PSNR perfor-
mance averaged over ten different background images at five
different rates (0.010, 0.025, 0.050, 0.075, 0.100 b/p). These
PSNR numbers are computed with respect to the whole image
(764 560), in which there is no loss in chromosome ROIs. The
reported rates are for the chromosome background images only.
The overall bit rate will be the sum of the rate for lossy coding
of the background image plus the rate [0.4298 b/p on average
as seen from Table I(b)] for lossless coding of the chromosome
ROIs.

Fig. 15 displays the original and reconstructed versions of
“144 461ASU” at different rates for the background. Chromo-
some ROIs in this image are losslessly coded at a rate of 0.4166
b/p using the cascaded differential and wavelet coder. At 0.01
b/p, the background blur is noticeable. At 0.025 b/p, it looks
better but is still a little blurry. At 0.05 b/p, we have to compare
the reconstructed image with the original to tell the difference.
Finally, at 0.075 b/p or 0.1 b/p, the difference between the two
images becomes imperceptible.

Because a background image only contains scattered cell nu-
clei and stain debris, even at very low bit rate (0.050 to 0.100
b/p), the reconstructed image is of very high quality (with over
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Fig. 15. Different versions of the spread image “144 461ASU”. (a) The original. (b) The background reconstructed at 0.01 b/p using our proposed coding
method (37.322 dB) (c) The background reconstructed at 0.025 b/p (41.544 dB). (d) The background reconstructed at 0.05 b/p (43.878 dB). (e) The background
reconstructed at 0.075 b/p (44.785 dB). (f) The background reconstructed at 0.1 b/p (45.314 dB).

40 dB in PSNR). It is, thus, not necessary to insist on loss-
less compression of these background images, which requires
a much higher rate (2.2013 b/p on average).

V. CONCLUSION

We have proposed a new coding scheme for efficient com-
pression of digital chromosome images. Our approach seeks to
exploit the knowledge that, for most spread and karyotype im-
ages, the chromosome ROIs, containing all necessary diagnostic
information, are well defined and segmented before the images
are stored. Chromosome boundaries are hence readily available
to both the encoder and decoder in terms of compactly repre-
sented boundary chain codes. In contrast, image compression
techniques (e.g., LZW coding) currently used in commercial
karyotyping systems code the entire image as a whole, wasting
valuable chromosome ROI segmentation information while re-
taining much of the unwanted redundancy. The new JPEG-2000
standard, unfortunately, does not provide the desirable support
for lossless compression of arbitrary ROIs.

We can losslessly compress the chromosome ROIs, while
lossily compressing the background and reconstructing the
image with imperceptible difference, both at low bit rates. Our
results are significantly better than those from LZW coding of
chromosome ROIs. With the modified SPIHT coder offering
state-of-the-art wavelet image coding performance at lower
complexity than JPEG-2000’s, we have achieved beyond what
JPEG-2000 can offer in terms of lossless chromosome ROI
coding.

Another advantage of the proposed approach is that our coder
generates embedded bit streams that allow progressive image
coding. This is very attractive for emerging applications like
progressive image transmission in cytogenetic telemedicine and
fast searching and browsing of chromosome and karyotype im-
ages.
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